Design and Simulation of Legged Walking Robots in MATLAB Environment

نویسندگان

  • Conghui Liang
  • Marco Ceccarelli
  • Giuseppe Carbone
چکیده

It is well known that legged locomotion is more efficient,speedy, and versatile than the one by track and wheeled vehicles when it operates in a rough terrain or in unconstructed environment. The potential advantages of legged locomotion can be indicated such as better mobility, obstacles overcoming ability, active suspension, energy efficiency, and achievable speed (Song & Waldron, 1989). Legged walking robots have found wide application areas such as in military tasks, inspection of nuclear power plants, surveillance, planetary explorations, and in forestry and agricultural tasks (Carbone & Ceccarelli, 2005; González et al., 2006; Kajita & Espiau, 2008). In the past decades, an extensive research has been focused on legged walking robots. A lot of prototypes such as biped robots, quadrupeds, hexapods, and multi-legged walking robots have been built in academic laboratories and companies (Kajita & Espiau, 2008). Significant examples can be indicated as ASIMO (Sakagami et al., 2002), Bigdog (Raibert, 2008), Rhex (Buehler, 2002), and ATHLETE (Wilcox et al., 2007). However, it is still far away to anticipate that legged walking robots can work in a complex environment and accomplish different tasks successfully. Mechanical design, dynamical walking control, walking pattern generation, and motion planning are still challenge problems for developing a reliable legged walking robot, which can operate in different terrains and environments with speedy, efficient, and versatility features. Mechanism design, analysis, and optimization, as well as kinematic and dynamic simulation of legged walking robots are important issues for building an efficient, robust, and reliable legged walking robot. In particular, leg mechanism is a crucial part of a legged walking robot. A leg mechanism will not only determine the DOF (degree of freedom) of a robot, but also actuation system efficiency and its control strategy. Additionally, it is well understood that a torso plays an important role during animal and human movements. Thus, the aforementioned two aspects must be taken into account at the same time for developing legged walking robots. Computer aided design and simulation can be considered useful for developing legged walking robots. Several commercial simulation software packages are available for performing modeling, kinematic, and dynamic simulation of legged walking robots. In particular, Matlab® is a widely used software package. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. By using a flexible programming environment, embedded functions, and several useful simulink® toolboxes, it is relative

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking

In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...

متن کامل

Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope

Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...

متن کامل

Modelling and Fabrication of Quadruped Robot Based on the Ojansen Mechanism by Using Matlab

Legged off-road vehicles exhibit better mobility while moving on rough terrain. Development of legged mechanisms represents a challenging problem and has attracted significant attention from both artists and engineers.The Theo Jansen mechanism is gaining widespread popularity among the legged robotics community due to its scalable design, energy, efficiency, low payload-to-machine-load ratio, b...

متن کامل

Semi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation

The research on the principles of legged locomotion is an interdisciplinary endeavor. Such principles are coming together from research in biomechanics, neuroscience, control theory, mechanical design, and artificial intelligence. Such research can help us understand human and animal locomotion in implementing useful legged vehicles. There are three main reasons for exploring the legged locomot...

متن کامل

Modular Reactive Neurocontrol for Biologically Inspired Walking Machines

A neurocontroller is described which generates the basic locomotion and controls the sensor-driven behavior ofa four-legged and a sixlegged walking machine. The controller utilizes discrete-time neurodynamics, and is ofmodular structure. One module isfor processing sensor signals, one is a neural oscillator network serving as a central pattern generator, and the third one is a so-called velocit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012